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SUMMARY
This paper describesCOLTHPF, a run-time support specifically designed for the co-ordination
of concurrent and communicating HPF tasks.COLTHPF is implemented on top of MPI and
requires only small changes to the run-time support of the HPF compiler used. Although the
COLTHPF API can be used directly by programmers to write applications as a flat collection
of interacting data-parallel tasks, we believe that it can be used more productively through
a compiler of a simple high-level co-ordination languagewhich facilitates programmers in
structuring a set of data-parallel HPF tasks according to common forms oftask-parallelism.
The paper outlines design and implementation issues, and discusses the main differences
from other approaches to exploiting task parallelism in the HPF framework. We show how
COLTHPF can be used to implement common forms of parallelism, e.g. pipeline and processor
farms, and we present experimental results regarding both synthetic micro-benchmarks and
sample applications. The experiments were conducted on an SGI/Cray T3E using Adaptor, a
public domain HPF compiler. Copyright  1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

Although HPF-1 allows programmers to express data-parallel computations in a portable,
high-level way[1], it is widely accepted that many important parallel applications cannot be
efficiently implemented following a pure data-parallel paradigm[2]. For these applications,
rather than having a single data-parallel program, it is more profitable to subdivide
the whole computation into several data-parallel pieces, where the various pieces run
concurrently and co-operate, thus exploitingtask parallelism. The advantage of exploiting
both forms of parallelism is twofold. On the one hand, the exploitation of parallelism
at different levels may significantly increase the scalability of applications which may
exploit only a limited amount of data parallelism[3]. On the other hand, the capability
of integrating task and data parallelism into a single framework allows the number of
addressable applications to be enlarged. Task parallelism is in fact often needed to reflect
the natural structure of an application. For example, applications of computer vision, image
and signal processing, can be naturally structured aspipelinesof data-parallel tasks where
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stages which deal with external devices may be run on a few processors to better match
the available I/O bandwidth, while the remaining processors can be more efficiently used
to run computation intensive parts of the application.

Depending on the applications, HPF tasks can be organized according to patterns which
are structured to varying degrees. For example, applications may be modeled by a fixed but
unstructured task dependency graph, where edges correspond to data-flow dependencies.
However, it is more common for parallel applications to process streams of input data,
so that a more regularpipeline task structure can be used. Several optimizations can be
exploited in this case to increase the efficiency of pipeline structures[4]. For example, the
degree of parallelism of some data-parallel stages can be reduced or increased in order to
balance the pipeline and optimize its bandwidth. In some cases, to enhance performance,
it may be better to replicate a ‘slow’ pipeline stage rather than using several processors for
its data-parallel implementation. Replication entails using aprocessor farm[5] structure,
where incoming jobs are dispatched on one of the replicas of the stage by adopting either
a simple round-robin or a dynamic self-scheduling policy. Note that when the per-job
execution times of a replicated stage are not uniform, a dynamic self-scheduling policy
may be mandatory in order to balance the workload assigned to the various replicas[6].

In this paper we presentCOLTHPF (COordination Layer for Tasks expressed in HPF),
a portable co-ordination/communication layer for HPF tasks implemented on top of the
MPI communication layer.COLTHPF provides suitable mechanisms for starting distinct
HPF data-parallel tasks on disjoint groups of processors, along with optimized primitives
for inter-task communication where data to be exchanged may be distributed among the
processors according to user-specified HPF directives. TheCOLTHPF interface can be
used directly by programmers to write their applications as a flat collection of interacting
data-parallel tasks, but we believe thatCOLTHPF may be more effectively used through a
compiler of a simple high-level co-ordination language which facilitates programmers in
structuring a set of data-parallel HPF tasks according to common forms oftask-parallelism,
such as pipelines and processor farms[7,8]. We presenttemplateswhich implement these
forms of task parallelism, and we discuss the exploitation of these templates by means of a
structured, high-level, template-based co-ordination language that facilitates programmers
in organizing HPF tasks according to these forms of parallelism. We claim that the use
of such a co-ordination language simplifies program development and restructuring, while
effective automatic optimizations (mapping, choice of the degree of parallelism for each
task, program transformations) can be easily devised because the structure of the parallel
program is statically known. Unfortunately, this approach requires a new compiler in
addition to HPF, though the templates proposed can also be exploited to design libraries
of skeletons[6,9,10]. However, the compiler is very simple, though its complexity may
increase depending on the level of optimization supported.

The paper is organized as follows. Section2 introduces COLTHPF design and
functionalities, and describes its implementation on top of the MPI communication layer
and the Adaptor compilation system[11]. Section3 shows how a co-ordination layer like
COLTHPF can be used to design templates exploited by a compiler of a simple, high-
level, template-based co-ordination language. In Section4 the synthetic micro-benchmarks
and the applications used to validate our approach are presented, and the results of the
experiments conducted on an SGI/Cray T3E are discussed in depth. Section5 surveys
works dealing with the introduction of task parallelism in the HPF framework, and finally,
Section6 draws some conclusions.
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2. IMPLEMENTATION OF COLTHPF

In this Section we describe in detail the implementation of theCOLTHPF layer on top of
the Adaptor HPF compilation system and the MPI communication layer. First of all we
specify the mechanisms which allow multiple HPF tasks to be executed concurrently onto
disjoint groups of MPI processors. Although it refers to the Adaptor compilation system,
our approach is general; thus any consideration made is valid irrespective of the particular
HPF compiler exploited.

We then discuss the techniques used to establish communication channels between data-
parallel tasks, and the primitives devised to exchange simple and structured data through
these channels. Communicating distributed data between data-parallel tasks entails making
several point-to-point communications and, when the data and processor layouts of the
sender and receiver tasks differ, it also requires the data exchanged to be redistributed.
We solved the data redistribution problem adopting thepitfalls algorithm by Ramaswamy
and Banerjee’s[12]. Since run-time redistribution algorithms are quite expensive and the
same communications are usually repeated many times,COLTHPF allowscommunication
schedulesto be computed only once, and to be reused when possible. Finally, we discuss
someCOLTHPF primitives which are useful for signaling simple events between tasks,
where the reception of messages may be carried out in a non-deterministic way. These
primitives are needed to implement many forms of task parallelism, which will be
discussed in Section3.

COLTHPF primitives are implemented asHPF LOCAL EXTRINSIC subroutines[13].
This means that when aCOLTHPF primitive is invoked by an HPF task, all the processors
executing the task switch from the single thread of the control model supplied by HPF to an
SPMD style of execution. Depending on the language definition,HPF LOCALsubroutines
have to be written in a restricted HPF language where, for example, data stored on remote
processors cannot be accessed transparently, but each processor can only access its own
section of any distributed array.

2.1. Group definition and task loading

HPF compilers that use MPI as an underlying communication layer exploit one or more
MPI communicators, a powerful MPI abstraction that allows communications to occur
only within a givencontext, i.e. within a group of specific processors. A predefined
global communicator (MPI COMMWORLD) is available by default which comprises all
the (virtual) processors running the MPI program. Adaptor usesMPI COMMWORLDto
perform communications and also to find out the processor ranks and the number of
processors involved in the execution. Note that similar run-time queries are present in
the code produced by any HPF compiler in order to arrange the logical processor layout
onto the actual physical processor grid and, consequently, distribute data and computations
among the processors involved in the execution.

In order to exploit task parallelism, our approach requires that distinct HPF tasks run
concurrently on disjoint groups of processors of the same MPI virtual machine. A natural
solution is thus to associate a distinctlocal MPI communicator with each HPF task. A
self-contained local context is thus supplied to each HPF task, whileCOLTHPF inter-task
communications can use the global communicatorMPI COMMWORLD. An HPF run-time
like the one provided by Adaptor, which refers to the global context, is clearly not usable
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program COLT_LOADER
.....
call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, colt_my_proc, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, colt_num_proc, ierr)

C determine group membership info on the basis of mapping information
call COLT_MAPPING(colt_my_proc, colt_num_proc, colt_my_task, colt_num_tasks)
call MPI_COMM_SPLIT(MPI_COMM_WORLD, colt_my_task, colt_my_proc, COLT_LOCAL_COMM, ierr)
call COLT_HPF_INIT(COLT_LOCAL_COMM)
if (colt_my_group .eq. 1) then call HPF_task1()
if (colt_my_group .eq. 2) then call HPF_task2()
.....
call COLT_HPF_EXIT ()
END

Figure 1. Pseudo-code of the COLTHPF loader

for our purposes. However only small changes are needed to make the run-time context–
safe. In fact the changes regard only MPI calls, which have to use the local context, i.e. the
MPI communicator local to the task, rather thanMPI COMMWORLD.

In order to create the various contexts, initialize the HPF run-times on these contexts,
and, finally, load the various HPF tasks, aCOLTHPF application is structured as an SPMD
program, whose main entry point is the Fortran 77 program illustrated in Figure1, hereafter
calledCOLTHPF loader. Specifically, theloaderperforms the following steps:

1. it initializes MPI and obtains the number of available processors and the relative
ranks;

2. it determines group membership information by callingCOLTMAPPING() ,
a subroutine which reads aconfiguration file that defines the various HPF
tasks. In particular, the configuration file specifies the number of HPF tasks
(colt num tasks ) that make up the parallel application, and, for each task
ti , i = {1, . . . ,colt num tasks }, the numberNi of processors that have to
be reserved for its execution. On the basis of this information, a simple mapping
function is established at run-time which allows each HPF taskti to be associated
with logical processors whose global MPI ranks are in the range[Ki−1, Ki ), where
K0 = 0 and Ki = Ki−1 + Ni ,∀ 1 ≤ i ≤ colt num tasks . The subroutine
COLTMAPPING() returns to the various calling processorscolt num tasks ,
i.e. the number of tasks involved, andcolt my group (colt my group =
{1, . . . ,colt num tasks }), i.e. the identifier of the task to which each processor
belongs.
Note that the use of a configuration file allows us to define at run-time the number
of processors devoted to the execution of each task, so that the user can change the
degree of parallelism of each task without recompiling the application;

3. it createscolt num tasks different communicators, one for each group of
processors that executes a single HPF task. To this end, MPI provides a powerful
function,MPI COMMSPLIT , which creates all the communicators that are needed
simultaneously, all of them with the same name (COLTLOCALCOMM);

4. it calls the HPF run-time initialization routine by passing the disjoint communicators
COLTLOCALCOMMas an argument. Recall that, for this purpose, the Adaptor HPF
run-time was modified to refer to this new local context rather than the global one;

5. it calls the corresponding HPF subroutine on each disjoint group of processors. Note
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that HPF distributed data structures are declared within the various HPF tasks and
are not thus visible at the level of theCOLTHPF loader.

2.2. Channel initialization

As mentioned above,COLTHPF optimizes the inter-task communication of distributed
data by allowing a pre-computedcommunication scheduleto be reused when a given
communication has to be repeated several times. Note that this pre-computed information
can only be reused if the relative distributions of the data structure to be transmitted do not
change either for the sender or for the receiver. If HPF dynamic redistribution directives are
exploited, the communication schedule must be recomputed by invoking the appropriate
COLTHPF primitives.

To store the communication schedule,COLTHPF associateschannel descriptorswith
both the ends of a communication channel used to transmit a given distributed array. The
descriptors store information on the size and distribution of the array transmitted over a
given channel, as well as an optimized communication schedule which is used to transfer
the array contents from the various processors of the source HPF task to the processors
of the destination task. To fill the descriptors,COLTHPF provides suitable primitives to be
invoked both by the sender and receiver tasks. Below, we illustrate the steps that have to be
performed by two interacting HPF tasks in order to prepare a channel for the transmission
of an arrayA:

1. Query the HPF run-time support to find out the layout ofA on the processor
grid associated with their own processor group. To this end, HPF provides an
appropriate intrinsic subroutine (HPF DISTRIBUTION ). Returned information is
stored in the associated descriptor and depends on the number of processors on
which the task actually runs, on their layout, on the distribution directives provided
by programmers, and also on decisions made by the compiler.

2. Exchange the information retrieved at the previous step so that each processor
involved knows the layout ofA at both the sender and receiver ends†.

3. On the basis of the data layout information, compute theintersectionsbetween
the distributions of arrayA at the sender and receiver ends by means of the
pitfalls algorithm[12]. Build, on the basis of the result of thepitfalls algorithm,
the Communication Schedulewhich is used whenever a communication actually
occurs to pack (unpack) the elements ofA and send (receive) them to (from)
each destination (source) processor. TheCommunication Scheduleis stored in the
channel descriptor associated withA and clearly differs for each processor. For
example, consider a processorpk which has to send (receive) its local section of
A to (from) processors belonging to the destination (source) task. For each receiver
(sender) processorp′

j , pk will store the index ranges (for all the array dimensions)
corresponding to local elements ofA owned byp′

j as well.

Figure2 shows the HPF code of two tasks loaded onto two distinct processors groups by
theCOLTHPF loader illustrated in the previous section (see Figure1). The two tasks prepare

†Note that a deadlock situation may arise when tasks have to prepare several channels, and the invocation order
of sends/receives needed to exchange array layout information is not chosen carefully. A simple way to avoid
the deadlock is to use an order in which all the (asynchronous) send calls precede all the receive calls on each
processor.
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412 S. ORLANDO AND R. PEREGO

SUBROUTINE HPF_Task1 SUBROUTINE HPF_Task2
real A(100,100) real A(100,100)

!HPF$ distribute A(BLOCK,*) !HPF$ distribute A(*,BLOCK)
...... ......
call COLT_INIT() call COLT_INIT()

C set up channel CH_OUT from this C set up channel CH_IN from the task
C task to task identified by DEST C identified by SRC to this task
C to transmit array A C to transmit array A

call COLT_FILL_DESCR(A, CH_OUT) call COLT_FILL_DESCR(A, CH_IN)
call COLT_SEND_DESCR(DEST, CH_OUT) call COLT_SEND_DESCR(SRC, CH_IN)
call COLT_RCV_DESCR(DEST, CH_OUT) call COLT_RCV_DESCR(SRC, CH_IN)
call COLT_INTERSECT(CH_OUT) call COLT_INTERSECT(CH_IN)
...... ......

do i=1,50 do i=1,50
<produce A> C receive A

C send A call COLT_RCV(A, CH_IN)
call COLT_SEND(A, CH_OUT) <consume A>

end do end do

Figure 2. Example of the definition and use of a COLTHPF communication channel to transmit 50
times a100× 100array ofREALs between two HPF tasks

a channel for the transmission ofA, a 100× 100 array ofREALs, which is distributed in
different ways on the two groups of processors. The array is then transmitted 50 times from
HPF Task1 to HPF Task2 .

Looking at the code of the two tasks one can note the calls to theCOLTHPF
primitives which define a communication channel between two HPF tasks. The primitives
COLTFILL DESCRand COLTINTERSECT correspond to steps 1 and 3 above,
respectively. The data layout information exchange performed in step 2 corresponds, on the
other hand, to the pair of primitivesCOLTSENDDESCRandCOLTRCVDESCR. Finally,
the array data exchange is performed by the primitivesCOLTSENDandCOLTRCV.

2.3. Data transmission

Our layer supplies ‘deterministic’ primitives to exchange simple and structured data
between tasks. Here the term deterministic applies to the receiver partner: in these
primitives, in fact, a channel identifier has to be specified, which unequivocally determines
the sender task (see Figure2).

When aCOLTHPF send primitive is invoked to transmit a distributed structure, array
data are packed by each processor of the sender group on the basis of the information
stored in the channel descriptor, and sent to the processors of the receiver task. In the worst
case each processor of the sender task may need to communicate with all the processors
of the receiver group. However, the channel descriptor contains all the information
needed, so that the processors involved carry out the ‘minimum’ number of point-to-
point communications needed to complete the task-to-task communication. Data are sent
by means of asynchronous MPI send primitives which use the global communicator and
suitable tags. The scheduling ordering of sends tries to prevent several processors of the
sender group from simultaneously sending messages to the same processor of the receiver
task.
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When a correspondingCOLTHPF receive primitive is invoked on the receiver task, all
the processors of the corresponding group wait for messages from processors of the sender
task and read them FIFO. They use the information stored in the descriptor to find out both
the number of messages to be received and the relative sources, and to unpack received
data.

The exchange of scalar values between tasks is simpler. In fact, no channel setting is
needed in this case. Since HPF scalars are replicated on all the processors of a given task,
the send primitive is started on all the processors of the sender task, but only the root
processor of the source group actually broadcasts the scalar value to all the processors of
the receiver group, while, on the receiver side, all the processors wait to read the message.

2.4. Special messages and non-determinism

Messages often need to be received in anon-deterministicway. As we will show in
Section3, an HPF task may need to receive data from a task which is non-deterministically
chosen from several possibilities. The problem is that to ensure correctness the same non-
deterministic choice must be globally made by all the processors that execute the receiving
task. In other words, if a taskt non-deterministically decides to receive first from task
ti , and then fromt j , this order must be maintained in the point-to-point communications
performed by all the processors oft in order to accomplish the overall communication.

Our layer thus provides an appropriate receive primitive that causes only the root
processor of the receiver group to make the non-deterministic choice of the sender, and
then to broadcast its choice to all the other processors of the receiver group. Only when
this choice has been communicated to the other receiving processors can they invoke a
deterministicprimitive (by providing the identifier of the chosen sender) to receive the
data from the selected source task as discussed above.

3. EXPLOITING COLTHPF FOR STRUCTURED TASK PARALLELISM

A programmer can write by hand different task-parallel structures by usingCOLTHPF
primitives to co-ordinate HPF data-parallel tasks. In other words,COLTHPF can be used
as a low-level message-passing API to structure HPF task-parallel programs. However,
we do not believe that this is the best way to exploitCOLTHPF features. In fact, this
programming methodology is too low level, requires tedious and error prone message-
passing programming, and needs programs to be deeply restructured if programmers want
to modify the task-parallel structure. We believe that novel programming tools should be
provided to allow programmers to express task parallelism in a more portable and high-
level way.

In our view programmers should only provide the HPF user-code of the various
tasks along with their co-ordination structure, while a compiling tool should produce
the actual code containing the explicit calls to theCOLTHPF layer to express inter-task
communications, and the code for task definition and loading (see Section2.1). Many
choices regarding resource allocation, such as the mapping of the various tasks on the
machine and the degree of parallelism of each task, might be decided by the compiler
tool on the basis of either suitable performance models or directives supplied by the
programmer.
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Figure 3. Two examples of the same application implemented: (a) by means of a pipeline structure of
data-parallel task; (b) by hierarchically composing the same pipeline with a processor farm structure

As an example of this high-level approach, below we show howCOLTHPF can
be exploited by a high-level, template-based co-ordination language that facilitates
programmers in organizing HPF tasks according to pipelines and processor farm forms
of task parallelism[7,8]. We presenttemplateswhich implement these forms of task
parallelism and we discuss their instantiation by means of a simple compiler.

3.1. Structured parallel programming

A simple high-level language to express the structured parallel programming strategy
discussed above,P3L, has already been proposed elsewhere[6,14]. P3L supplies a set
of constructs, each corresponding to a specific form of parallelism. There are constructs
for control and data parallelism, and they can be composed hierarchically. This means that
although the final structure of an application can be seen as a flattened co-ordination of
sequential tasks, it has been obtained byhierarchicallycomposing severalP3L constructs.
In this paper we propose the adoption of aP3L-like co-ordination language, where tasks
to be co-ordinated are data-parallel HPF tasks instead of sequential processes.

As an example of the use of aP3L-like language to express the co-ordination among
HPF tasks, Figure3(a) shows the structure of an application obtained by composing five
data-parallel tasks according to apipelinestructure, where the first and the last tasks of
the pipeline only produce and consume, respectively, a data stream. The data type of the
input/output channels connecting each pair of interacting tasks is also shown. For example,
Task 2 receives an input stream, whose elements are pairs composed of anINTEGERand
an N × N matrix ofREALs. Of course, the same data types are associated with the output
stream elements of Task 1. Figure3(b) shows the same application where Task 3 has been
replicated to enhance performance, thus exploiting aprocessor farmstructure within the
original pipeline. In this case, besides computing their own job by transforming their input
data stream into the output one, Tasks 2 and 4 also have to carry out other work related to
the presence of a farm structure. In particular, Task 2 has to dispatch the various elements
of the output stream to the three replicas of Task 3, while Task 4 has to collect the elements
received from the replicas of Task 3.
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The P3L-like code to express Task 3 in Figure3 would be:

task_3 in(INTEGER a, REAL b) out(REAL c(N))
hpf_distribution(DISTRIBUTE C(BLOCK, *))
hpf_code_init( <init of the task status> )
hpf_code( <code that uses a and b, and produce c> )

end

Note the input and the output lists of the task, the specification of the layout for distributed
parameters, and the HPF user code which initializes the task status and transforms an item
of the input stream into an element of the output one. In Figure3(b) Task 3 is replicated.
This can be expressed by means of a farm construct, whose identical workers are replicas
of Task 3:

farm foo in(INTEGER a, REAL b) out(REAL c(N))
task_3 in(a, b) out(c)

end farm

Finally, the farm must be composed with the other tasks to obtain the task structure
illustrated in Figure3(b)‡:

main
pipe in() out()

task_1 in() out(INTEGER a, REAL b(N,N))
task_2 in(a,b) out(INTEGER c, REAL d)
foo in(c,d) out(REAL e(N))
task_4 in(e) out(INTEGER f(M))
task_5 in(f) out()

end pipe
end main

Note the hierarchical composition of the task-parallel constructs: there is apipe , which
invokes afarm , which, in turn, invokes a simple HPF data-parallel task. The specification
of the structure of the application is concise, simple and high-level. Moreover, by only
modifying this high-level description, a programmer can radically change the parallel
structure of the application to test alternative implementations. The compiler, on the basis
of the input/output lists of the various constructs, can check whether, between consecutive
stages in the pipe, data types match.

Note that the high-level code above does not specify the number of processors to
be exploited by each task, nor the number of workers of the farm (e.g. the number of
replicas of Task 3). Suitable directives could be provided, so that a programmer could
tune these parameters to optimize performance and resource allocation. However, since
we are concentrating on a set of restricted and structured forms of parallelism, many
optimizations based on ad hoc performance models can be devised[4]. To exploit these
performance models for automatic code restructuring and optimization, some information

‡For the sake of brevity, the definition of the other tasks of thepipe is not reported.
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about the costs of the specific application often has to be known[6]. More specifically, the
optimization techniques should be based on:

• an analytic performance model of the structures used to exploit task parallelism
• profiling information about execution times of data-parallel tasks, as well as about

data transmission times. This information depends on the particular HPF user code,
and on the features of the target machine

• the number of processors actually available on the target machine.

3.2. Implementation templates

To implement each form of parallelism provided by the proposed high-level co-ordination
language, we have to devise a set of distinctimplementation templateswhose composition
realizes the desired task structure. A template can be considered as the code skeleton of an
HPF task which co-operates with other tasks according to a fixed interaction pattern. We
have thus various different templates which implement, as an example, the first, middle
and last stages of a pipeline, or the generic worker of a farm structure. In order to obtain
the actual implementation of a user application, the templates corresponding to the chosen
parallel structure must be instantiated by inserting the user-provided code, as well as the
correct calls to theCOLTHPF primitives which initialize the communication channels and
exchange data between tasks. The set of instantiated templates thus entirely define the HPF
tasks of the user application, and only have to be compiled and linked with theCOLTHPF
loader (see Section2.1) to obtain the application executable code. Note, in fact, that in our
approach the instantiated templates are exactly the HPF subroutines called by theCOLTHPF
loader on the various groups of MPI processors.

Below we present some templates which implement pipeline and processor farm forms
of parallelism, and we briefly describe the instantiation of the template of a generic pipeline
stage starting from the high-level specification of the stage itself.

3.2.1. A pipeline template and its instantiation

A pipelinestructure is a chain of data-flow stages, which consumes and produces an input
and an output data stream, respectively. Thus the code scheme of a generic pipeline stage,
i.e. its implementation template, has to be organized as a loop that receives an element of
the input stream, executes some user code, and, finally, sends the corresponding element
of the output stream.

Moreover, if the length of the processed stream is unknown until run-time, a distributed
termination protocol must be implemented within the templates to propagate termination
information along the pipeline stages. To this end we associate an incremental mark with
each element of the stream. The transmission of this mark precedes the communication of
the associated stream element between any pair of HPF stages. The stream termination is
thus signaled by the reception of a particularENDOF STREAMmark. On the other hand,
if the length of the stream is statically known, a template that does not adopt the above
distributed termination protocol can be exploited instead.

Figure 4 shows the P3L-like specification of a generic pipeline stage and the
instantiation of the corresponding template. We are thus assuming that the instantiation is
carried out by a compiler associated with theP3L-like co-ordination language outlined in
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INTEGER a
REAL b
REAL c(N,N)

hpf_code(<HPF code that uses a and b, and produces c>)

     hpf_distribution(DISTRIBUTE C(BLOCK,*))
task in(INTEGER a, REAL b) out(REAL c(N,N)) 

typedef_distribution.inc init.inc body.inc

<HPF code that uses a and b, and produces c>

SUBROUTINE task

INCLUDE ’typedef_distribution.inc’
INCLUDE ’init.inc’

<receive the mark of the next input stream elem.>

DO WHILE
<receive the next input stream elem.:  (a, b) >
INCLUDE ’body.inc’

<send the mark previously received>
<send the next output stream elem.:  (c) >

END DO WHILE
<receive the mark of the next input stream elem.>

<send the END_OF_STREAM mark>
END task

!HFF$ DISTRIBUTE c(BLOCK,*)

< init of the task status >

INSTANTIATED TEMPLATE OF A GENERIC PIPELINE STAGE 

end

)<init of the task status>     hpf_code_init(

<initialization of I/O channels>

<the END_OF_STREAM is not encountered>

Figure 4. A template of a pipeline stage, where its instantiation is shown starting from a specific construct of a high-level co-ordination language
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418 S. ORLANDO AND R. PEREGO

Section3. Note that the input/output lists of data, along with their distribution directives,
are used by the compiler to generate an include filetypedef distribution.inc .
Moreover, the declaration of task variables along with the relative code that must be
executed for their initialization, is included in another file,init.inc . Finally, the code
to be executed to consume/produce the data streams is contained in the include file
body.inc . These files are directly included in the source code of the template which
is also shown in the Figure. To complete the instantiation of the template, the appropriate
calls to theCOLTHPF layer which initialize the input/output channels (see Section2.2)
and send/receive the elements of the input/output stream (see Section2.3) also have to
be generated and included. The correct generation of these calls relies on knowledge of
the task input/output lists, as well as the mapping of the tasks on the disjoint groups of
processors.

The template shown in Figure4 regards a task that is in the middle of a pipeline chain.
The templates for the first and the last tasks of the pipeline are slightly different. In fact, the
first one has to communicate with the following task in the chain alone, while the last one
has to receive data solely from the previous task in the chain. Moreover, the first task has to
generate the incremental marks associated with stream elements and theENDOF STREAM
mark which propagates termination.

3.2.2. Nesting processor farm structures within a pipeline

The processor farmform of parallelism ensures that data coming from an input stream
are dispatched to a set of workers, which produce the corresponding output stream.
The processor farm structure is conceived as being used to increase the bandwidth of a
‘slow’ pipeline stage when the alternative method of increasing the number of processors
exploited by its data-parallel implementation is not suitable.

Inserting a farm into a pipeline structure entails changing the templates used to
implement the tasks executed by the stages that precede and follow the farm structure.
We call these two tasks, i.e. the one preceding and the one following the farm structure,
emitterandcollector, respectively.

As an example of hierarchical compositions of pipelines and farms structures, consider
Figure5. Figure5(a) shows the structure of a simple pipeline application composed of five
data-parallel stages, namely Tasks 1–5. Note the numbers close to each circle represent
a given task: these numbers are the identifiers of the processor groups, i.e. the set of
processors, onto which each task has been mapped. Figure5(b) shows the same pipeline
where the bandwidth of the second stage has been increased by replicating the stage in three
copies, according to a farm structure. Here, in terms of composition of diverse forms of
parallelism, the outermost pipeline has been hierarchically composed with a farm, which,
in turn, exploits a single data-parallel task (Task 2). Finally, Figures5(c) and5(d) show
the same pipeline where the third stage has been replicated as well. In the former case, the
outermost pipeline is hierarchically composed with two farms, which exploit, respectively,
replicas of Task 2 and Task 3. In the latter case (Figures5(d)), the outermost pipeline
is hierarchically composed with a single farm, whose workers are in turn structured as a
pipeline made up of two stages (Task 2 and Task 3).

This example clearly shows the advantage of exploiting a high-level co-ordination
language like the one proposed in Section3. In this case, in fact, all the transformations
outlined in the Figure only entail changing the nesting of the high-level language constructs
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Figure 5. A pipeline composed of 5 stages (a), and the same pipeline where the bandwidth of the second stage has been increased by replicating the stage in
three copies according to a farm structure (b), and where both the second and third stages are replicated (c), (d)
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420 S. ORLANDO AND R. PEREGO

and recompiling the program. On the other hand, if template instantiations and code
restructuring is done manually, the programmer’s job becomes harder and error-prone.

We now outline the organization of the templates that implement the structures
illustrated in Figure5. Consider first the case of a farm inserted in a pipeline (see
Figure5(b)). Note that the various workers are mapped on distinct processor groups, each
composed of the same number of processors. The templates used to implement the emitter
(Task 1) and the collector (Task 3) are slightly different from the generic template of a
pipeline stage, which was discussed in Section3.2.1. First of all, note that the emitter
and collector have to establish a channel with all the workers (each being a replication of
Task 2) rather than with a single preceding/following task. However, since the processor
and data layouts of all the workers are identical, both the emitter and the collector only need
to build a singleCommunication Schedulewhich can be reused for all the communications
with the various workers. Another difference regards the management of distributed
termination when the stream’s length is not known a priori. In this case the emitter has
to communicate theENDOF STREAMmark to all the workers of the farm in order to
signal that they can terminate. Moreover, since all the workers communicate this mark to
the collector before their termination, the collector, before propagating termination, has to
wait for the reception of all theseENDOF STREAMmarks.

In the implementation of the template of a generic collector we need to use the
special primitives illustrated in Section2.4. In fact, the collector has to wait for a new
stream element from any of the farm workers, so that it has to receive the mark non-
deterministically, thus choosing the processor group from which the corresponding stream
element must be received. Once the sender group has been chosen, the collector can
use deterministic primitives (see Section2.3) to complete the reception of the stream
data element. There are also differences in the co-operation between the emitter and the
workers. The emitter has to make scheduling decisions to choose the worker to which
its current element of the output stream has to be sent. We implemented two distinct
scheduling policies. The simplest one isRound Robin, in which the emitter always sends
the element marked byj to the worker identified by( j modnw) + 1, wherenw is the
number of workers. The other policy isSelf Scheduling, where a new element of the stream
is sent to a given worker only when it is ready to receive it. As discussed in Section4,
this kind of dynamic scheduling is very important when jobs executed by the workers are
characterized by non-uniform execution times. Figure5(b) illustrates a farm that exploits
self scheduling. Note the dashed arrows from the workers to the emitter: they represent
request signalssent by the workers to the emitter toself schedulea new job§. Also in this
case, the signal messages have to be received non-deterministically. At the beginning of the
execution, however, the emitter sends a distinct element of the data stream to each worker
without waiting for a request signal. In this way, the overhead to start workers is reduced,
and the workers may soon begin computing. The emitter then enters a loop in which it
sends a new stream element to a worker only if a corresponding request signal has been
received, while the workers exploit job prefetching by sending a request signal as soon as
they receive a new stream element from the emitter. Note that, due to the uneven finishing
times of the workers, the ordering of the stream elements arriving at the collector may be
different from the original one. The marks associated with each stream element can be used
to restore the original ordering if necessary.

§Request signals are not needed in the template which exploits Round Robin.
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From the discussion above, one can easily imagine the implementation of the structure
shown in Figure5(d). On the other hand, the case illustrated in Figure5(c), where two
farms are composed one after another in a pipeline chain, requires further comments. This
structure is useful when both execution times of Tasks 2 and 3 are not uniform, so that we
need to schedule incoming input stream elements dynamically. In particular, while Task 1
has to dynamically schedule stream items to the workers implementing Task 2, these in turn
have to schedule their output stream items to the various replicas of Task 3. To solve this
scheduling problem we need to introduce abroker process, which is shown in Figure5(c) as
a small circle mapped on Group 10 (a singleton group). The broker exchanges information
with the various replicas of Task 2 and Task 3 in order to dynamically route stream elements
produced by each replica of Task 2 to one of the replicas of Task 3. Note that, to avoid
making Figure5(c) confusing, the arcs corresponding to information exchanges of the
broker with the various replicas of Tasks 2 and 3 are not shown.

The template to adopt to implement Task 2 is, in this case, slightly different from the one
exploited for a generic worker. In fact, each replica of Task 2 asks the broker for a group
identifier to which its next stream item has to be transmitted. Conversely, each replica of
Task 3 has to send its request signal to the broker (rather than to the farm emitter). It then
waits for a new stream item but, since it can arrive from any of the replicas of Task 2, it
must be received non-deterministically.

4. EXPERIMENTAL RESULTS

To validate our approach and quantify the costs associated with the implementation
of COLTHPF, we used both synthetic micro-benchmarks and sample applications.
The synthetic micro-benchmarks were used to characterize the performance of the
implementation by measuring the costs associated with the communication of distributed
data among concurrent data-parallel tasks, and to demonstrate the effectiveness of the
scheduling strategies exploited by the farm templates. The applications were used to
show the usefulness of our approach and the performance improvement resulting from
the exploitation of a mixture of both task and data parallelism with respect only to
exploit data parallelism with a pure HPF implementation. To compare the results, the
same HPF compiler (Adaptor), the same data layouts and the same parallelization strategy
(except the task parallelism, of course) were used for both the pure HPF andCOLTHPF
implementations of the sample applications.

4.1. Synthetic micro-benchmarks

The first micro-benchmark implemented measures the time required to exchange a
distributed array between two data-parallel tasks. We executed this sort of ‘ping-pong’
program with 1-D arrays distributed(BLOCK) in the source task and(CYCLIC) in the
receiver task, and 2-D arrays distributed(*,BLOCK) and (BLOCK,*) in the source
and destination tasks, respectively. Experiments were executed on an SGI/CRAY T3E
by varying both the size of the exchanged arrays and the number of processors within
each data-parallel task. We measured the time of the slowest processor and divided this
time by the number of communications accomplished to obtain the average time per each
communication. The results are reported in Figure6. The plots reported in Figure6(a)

Copyright 1999 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.,11, 407–434 (1999)



422 S. ORLANDO AND R. PEREGO

0.0001

0.001

0.01

0.1

0 5 10 15 20 25 30 35

T
im

e 
in

 s
ec

on
ds

Number of processors per task

(BLOCK) -- (CYCLIC) Comm. Latency

512 KB
256 KB
128 KB

8 KB
2 KB

0.0001

0.001

0.01

0.1

0 5 10 15 20 25 30 35

T
im

e 
in

 s
ec

on
ds

Number of processors per task

(*,BLOCK) -- (BLOCK,*) Comm. Latency

512 KB
128 KB

8 KB

(a) (b)

0.001

0.01

0.1

1

0 5 10 15 20 25 30 35

T
im

e 
in

 s
ec

on
ds

Number of processors per task

(*,BLOCK) -- (BLOCK,*) Comm. Latency

32 MB
8 MB
2 MB

(c)

Figure 6. Average task-to-task communication latencies as a function of the size of the data
exchanged and the number of per-task processors

show the time required to communicate 1-D arrays between two tasks, where the arrays
are block partitioned among the sender processors and cyclically distributed within the
destination task. As can be seen, there is a small increase in the communication times
measured when two processors are exploited within each task with respect to the case with
one processor. This is due to the different data layout exploited which, if several processors
are used for each task, entails packing non-contiguous data before sending them. Moreover,
communication latencies tend to increase with the number of per-task processors for small
array sizes, while the opposite effect was measured in the tests involving large volumes
of data. This behavior can also be noted in the plots shown in Figures6(b) and6(c),
which report the results obtained with 2-D arrays. In all these plots communication latency
decreases up to a minimum and then tends to increase slightly. For example, for 2-D
arrays of 512 KB (see Figure6(b)) note that communication latency decreases up to the
16 per-task processors case, and then increases when 32 processors are exploited. With
very large arrays (e.g. 8, 32 MB) the decrease is constant up to the maximum number of
per-task processors tested. The curves thus behave as expected: for small data volumes
the communication startup time dominates the overall latency, while for larger arrays the
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Table 1. Ratio of execution times of processor farm implementations exploiting Round Robin and
Self Scheduling techniques

RR/SS ratio

µ Exp. distr. Unif. distr. Balanced jobs

0.2 1.13 1.12 0.999
0.4 1.13 1.12 0.997
0.8 1.14 1.11 0.999

main contribution to communication latency is given by the message transfer time. Note
that the transfer time is directly proportional to the length of messages transmitted and
thus indirectly proportional to the number of processors onto which the exchanged array is
distributed.

The other micro-benchmark implemented measures the effectiveness of our processor
farm implementation template. To this end we built a synthetic pipeline application
composed of three stages. The first stage produces a stream of arrays and sends one array
to the next stage everyT1 seconds. The second stage is replicated in five copies according
to a processor farm structure. It performs on each array receiving a dummy computationC,
before forwarding it to the third stage. Finally, the third stage simply consumes an element
of the stream received from the workers of the farm everyT3 seconds. This application
was implemented with different templates thus producing two different versions: the first
version exploits aRound Robin(RR) technique to dispatch the jobs to the five replicas
of the second stage, while the second version exploits theSelf Scheduling(SS) technique
described in Section3.2.2.

Moreover, with both the versions we conducted three series of experiments by changing
the costT i

2 of the dummy computationC performed in the second stage on thei th stream
element. In the first series of experiments the costsT i

2 were determined according to an
exponential distribution with averageµ, in the second series we used a uniform distribution
with the same average, and, finally, the costsT i

2 used in the third series of experiments were
exactlyµ for all the stream elements. Other assumptions regard the value ofµ which was
forced to be equal to 0.2, 0.4 and 0.8 s and the parameters which were fixed for all the
experiments. In particular we used four processors within each data-parallel task, we forced
T1 = T3 = µ/5 (µ divided by the number of farm workers) to balance the pipeline stages,
and we fixed to 400 the number of stream elements processed where each element is a
256× 256 array of 8 byte integers.

Table1 reports the results obtained in these tests as a ratio between the overall execution
times obtained with the RR version w.r.t. the SS version. The SS version gave performances
from 13% to 14% better than the RR one for exponentially distributed values ofT i

2. The
improvements ranged instead from 11% to 12% in the case of uniformly distributed costs,
while in the balanced case (i.e.T i

2 = µ,∀i ), the difference between the results of the two
implementations is negligible with a slight performance loss measured for the SS version
(see the fourth column of Table1).

These results demonstrate the utility of employing dynamic scheduling strategies when
the computational costs are non-uniform and unknown until run-time. On the other hand,
when execution times are uniform, and thus no dynamic scheduling should be needed, the
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overheads introduced by our implementation of self scheduling are negligible (less than
1%). In the next Section we will show the effectiveness of the farm template by exploiting
self scheduling for the implementation of a real application as well.

4.2. Sample applications

Two sample applications were implemented by instantiating the templates described in
Section3.2. The first one is a classical 2-D fast Fourier transform (FFT) which is probably
the application most widely used to demonstrate the usefulness of exploiting a mixture
of both task and data parallelism[2,15]. The second sample application considered is a
complete high-level computer vision application which detects in each input image the
straight lines that best fit the edges of the objects represented in the image itself.

4.2.1. 2-D fast Fourier transform

FFT transformations are commonly used in the field of signal and image processing
applications which generally require the FFT to be applied in real-time to a stream of
frames acquired from an external device. Given anN × N array of complex values, a
2-D FFT entails performingN independent 1-D FFTs on the columns of the input array,
followed by N independent 1-D FFTs on its rows. An HPF code implementing a 2-D FFT
thus has the following structure:

complex A(N,N)
!HPF$ distribute (*,BLOCK):: A

......
do while <End of STREAM>

C read a new input STREAM elem
call read (A)

!HPF$ INDEPENDENT
do icol=1,N

call fft_slice(A(:,icol))
end do
A = transpose(A)

!HPF$ INDEPENDENT
do icol=1,N

call fft_slice(A(:,icol))
end do

C write a new output STREAM elem
call write (A)

end do
......

Note that the 2-D arrayA is distributed over the second dimension while its first
dimension is collapsed. This allows the first 1-D FFT to be applied in parallel to each
memory-contiguous column ofA. After the first independent loop, matrix A is
transposed and the 1-D FFT is performed again in parallel on the columns ofA. No
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communications are generated by the HPF compiler within the two parallel loops, while
matrix transposition involvesall-to-all communications.

By exploiting the co-ordination language proposed in Section3, we can easily structure
the 2-D FFT application as a two-stage pipeline in the following way:

pipe in() out()
stage1 in() out(COMPLEX A(N,N))
stage2 in(A) out()

end pipe

where the two stages are defined as follows:
stage1 in() out(COMPLEX A(N,N))

hpf_distribution(DISTRIBUTE A(*,BLOCK))
hpf_code_init(.....)
hpf_code(

C read a new input STREAM elem
call read (A)

!HPF$ INDEPENDENT
do icol=1,N

call fft_slice(A(:,icol))
end do

)
end

stage2 in(COMPLEX B(N,N)) out()
hpf_distribution(DISTRIBUTE B(BLOCK,*))
hpf_code_init(.....)
hpf_code(

!HPF$ INDEPENDENT
do irow=1,N

call fft_slice(B(irow,:))
end do

C write a new output STREAM elem
call write (A)

)
end

Matrix transposition is not necessary in this case. In fact, due to the(BLOCK,*)
distribution, the second stage can perform theN independent 1-D FFTs on the matrix
rows without communications.

Figure7 shows the per input array execution times for different problem sizes obtained
on an SGI/Cray T3E with HPF andCOLTHPF implementations of the 2-D FFT. The
results are plotted as a function of the number of processors used, where ifP is the
total number of processors, theCOLTHPF implementation exploitsP/2 processors for both
the first and second stages of the pipeline. As can be seen, theCOLTHPF implementation
considerably outperforms the HPF one in all the tests conducted. The better performance
of the mixed task and data-parallel implementation is highlighted by Table2 which reports
the ratio between the HPF andCOLTHPF 2-D FFT execution times for different sizes of
the problem and numbers of processors exploited. The performance improvement obtained
is significant, and ranges from 11% to 134%. The largest improvements were obtained
when 32 or 64 processors were used on small/medium sized problems. This behavior is
particularly interesting because many image and signal processing applications require
the 2-D FFT to be executed in real-time on data sets whose size is limited by physical
constraints (e.g. the circuitry of the video camera or of other input devices)[3].

4.2.2. High-level computer vision

The second sample application used to validate our approach is a high-level computer
vision application which detects in each input image the straight lines that best fit the edges
of the objects represented in the image itself. For each grey-scale image received in input
(for example, see Figure8(a)), the application enhances the edges of the objects contained
in the image, detects the straight lines lying on these edges, and finally builds a new image
containing only the most evident lines identified at the previous step. The application can
be naturally expressed according to a pipeline structure. The first stage reads from the file
system each image, and applies a low-level Sobel filter to enhance the image edges. Since
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Figure 7. Execution time per input array for HPF and COLTHPF implementations of the 2-D FFT
as a function of the number of processors

Table 2. Ratio of execution times obtained with the HPF andCOLTHPF implementations of the 2-D
FFT

HPF/COLTHPF ratio

Procs 256× 256 512× 512 1024× 1024

2 1.11 1.23 1.26
4 1.12 1.19 1.23
8 1.11 1.20 1.25

16 1.28 1.23 1.24
32 1.51 1.36 1.32
64 2.34 1.78 1.48

the produced image (see Figure8(b)) is still a grey-scale one, it has to be transformed into
a black-and-white bitmap (see Figure8(c)) to be processed by the following stage. Thus an
inexpensive thresholding filter is also applied by the first stage before sending the resulting
bitmap to the next stage. The second stage performs a Hough transform, a high-level vision
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(a) (b)

(c) (d) (e)

Figure 8. Example of the input/output images produced by the various stages of the computer vision
application: (a)⇒ (b): Sobel filter stage for edge enhancement; (b)⇒ (c): thresholding stage to
produce a bit map; (c)⇒ (d): Hough transform stage to detect straight lines; (d)⇒ (e): de-Hough

transform stage to plot the most voted for straight lines

Table 3. Computation and I/O times (in seconds) for the HPF implementation of the three stages of
the computer vision application as a function of the number of processors used

Sobel&Thresh Hough de-Hough

Procs I/O Comp Total Comp I/O Comp Total

1 9.6 11.9 21.5 148.3 1.0 21.4 22.4
2 10.0 5.8 15.8 78.0 1.2 17.3 18.5
4 10.2 2.4 12.6 43.5 1.3 13.7 15.0
8 10.4 0.9 11.3 24.7 1.3 12.3 13.6

16 10.5 0.7 11.2 15.9 1.3 11.8 13.1
32 11.6 0.7 12.3 12.3 1.4 11.6 13.0

algorithm which tries to identify in the image specific patterns (in this case straight lines)
from their analytical representation (in this case the equations of the straight lines). The
output of the Hough transformation is a matrix of accumulatorsH (ρ, θ), each element of
which represents the number of black pixels whose spatial co-ordinates(x, y) satisfy the
equationρ = x cosθ + y sinθ . Matrix H can be interpreted as a grey-scale image (see
Figure8(d)), where lighter pixels correspond to the most ‘voted for’ straight lines. Finally,
the third stage chooses the most voted for lines, and produces an image where only these
lines are displayed. The resulting image (see Figure8(e)) is then written in an output file.

Table3 illustrates some results of experiments conducted on an SGI/Cray T3E. It shows
the completion times of each of the three stages, where the input stream is composed of
60 256× 256 images. Note that the I/O times of the first and the third stage do not scale
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Table 4. Comparison of execution times (in seconds) obtained with the HPF andCOLTHPF
implementations of the computer vision application

COLTHPF HPF

Procs Structure Exec. time Speedup Exec. time Speedup HPF/COLTHPF ratio

8 [1 (3,3) 1] 30.7 6.26 49.7 3.87 1.6
16 [2 (4,4,4) 2] 19.9 9.66 40.3 4.77 2.0
24 [4 (8,8) 4] 15.8 12.14 38.2 5.03 2.4
32 [8 (8,8) 8] 14.4 13.34 37.6 5.11 2.6

with the number of processors used. If the total completion times reported in the table are
considered, it is clear that there is no point exploiting more than 4/8 processors for these
stages. On the other hand, the Hough transform stage scales better. We can thus assign
enough processors to the second stage so that its bandwidth becomes equal to that of the
other stages. For example, if we use two processors for the first stage, we should use four
processors for the third stage, and 16 for the second one to optimize the throughput of the
pipeline. Alternatively, since the cost of the Hough transform algorithm very much depends
on the input data[16], we may decide to exploit a processor farm for the implementation of
the second stage. For example, a farm with two replicated workers, where the bandwidth of
each worker is half the bandwidth of the first and the last stages, allows the overall pipeline
throughput to be optimized, provided that a dynamic self scheduling policy is implemented
to balance the workers’ workloads.

Table4 shows the execution times and the speedups measured on a Cray T3E executing
our computer vision application, where we adopted a processor farm and self-scheduling
for the second stage of the pipeline. The column labeledStructurein the table, indicates
the mapping used for theCOLTHPF implementations. For example,[4 (8, 8) 4] means
that four processors were used for both the first and last stages of the pipeline, while
each one of the two farm workers was run on eight processors. The Table also compares
the results obtained by theCOLTHPF implementations with those obtained by pure
HPF implementations exploiting the same number of processors. The execution times
measured with theCOLTHPF implementations were always better than the HPF ones. The
performance improvements obtained are quite impressive and range from 60% to 160%.

5. RELATED WORK

There has been increasing interest in the promising possibility of exploiting a mixture
of task and data parallelism, where data parallelism is restricted within HPF tasks and
task parallelism is achieved by their concurrent execution. Extensions for the exploitation
of task parallelism have also been introduced in the specifications of the new HPF 2.0
standard[17]. These extensions were inspired by a proposal of the research group involved
in the Fx project at CMU[18]. According to the HPF 2.0 standard, task parallelism is
introduced by allowingTASK REGIONblocks to be specified. Within aTASK REGION,
we may specify throughONblocks that a set of HPF tasks has to be executed concurrently
on disjoint subsets of processors, where each task only accesses data distributed on the
associated processor subset. Communications between tasks are accomplished by simple
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assignments outsideONblocks, but inside the outerTASK REGIONblock. The main
advantage of this approach, besides being proposed by the HPF Forum as a standard to
be hopefully adopted by the industry, is its adherence to the general philosophy followed
by HPF. In this approach, in fact, any HPF source program can also produce a correct
sequential executable if a Fortran 90 compiler is exploited. Moreover, since tasks are
started at run-time byON directives inside aTASK REGION, the assignment of the
various processors subsets can be changed dynamically. For example, at the beginning
all processors can be used to carry out a single data-parallel computation, and after,
i.e. when they enter aTASK REGIONblock, they may selectively execute one of the
concurrent tasks specified. On the other hand, its main disadvantage is, in our opinion,
the excessive deterministic behavior of task communications. In fact, the use of explicit
assignments for inter-task communications does not allow programmers to express non-
deterministic behaviors. For example, a programmer cannot specify an HPF task which,
non-deterministically, waits for input data from several other HPF tasks, even though this
communication pattern may occur very often in task parallel programs. Finally, the low-
level mapping of tasks is worth noting. Programmers have to explicitly specify processor
sub-grids on which tasks must be mapped, even though, as usual, the processor number can
be queried at run-time, and processor sub-grids can be expressed in terms of this number.

Another interesting proposal has appeared in the literature[19], which, like HPF 2.0,
requires changes to the original HPF 1.0 language and the associated compiler. The
proposal adopts language directives similar to the ones previously proposed by the Fx
research group[20], and requires programmers to specify the input/output list for all the
tasks involved rather than explicitly providing assignments to express communications.
Here tasks can either bePURE HPF-like subroutines or simple statements. Since
programmers don’t specify either the allocation of tasks on specific subsets of processors,
or explicit communications/assignments between tasks, the compiler has to (i) extract
a data dependencies graph of the tasks, (ii) decide the best allocation of these tasks,
and (iii) insert the right communications between tasks. This approach is much more
high-level than the one proposed for HPF 2.0, where a programmer has to explicitly
specify processor sub-grids on which tasks are mapped, but it does require sophisticated
compiling techniques for task allocation. Nevertheless, the type of task interaction that can
be specified is still deterministic, as in HPF 2.0. A disadvantage with respect to HPF 2.0 is
that the resulting source code is no longer a syntactically correct Fortran 90 program.

Opus[21] is an object-oriented language that allows task and data-parallelism to be
integrated. By adopting Opus one can define classes of objects, calledShareD Abstractions
(SDAs), using a syntax similar to that of HPF. Each instance of an SDA encapsulates
distributed data and methods, where methods have exclusive access to encapsulated data.
Data parallel tasks are thus started by creating instances of specific SDAs, while the
inter-task co-operation takes place by means of remote synchronous (or asynchronous)
method invocations. Note that SDA instances are started dynamically by a so calledco-
ordination task, so that the run-time that implements inter-task communication has to
control passing distributed data structures from one task to another, including any possible
remapping that might be needed. The run-time accomplishes this through a handshaking
protocol, which exchanges the distribution information about the actual argument (on the
caller SDA) and the formal one (on the callee SDA) of a given method. Note that this
handshaking protocol is very similar to theCOLTHPF protocol to create a channel between
two tasks. Finally, even though in this paper we envision the use ofCOLTHPF to start and
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co-ordinate a statically fixed set of HPF tasks, if more dynamic behaviors are needed to
implement other forms of parallelism, theCOLTHPF loader could be modified to support
dynamic task creation. Unfortunately, the version ofCOLTHPF discussed in this paper
exploits MPI which does not allow virtual processors to be dynamically added/deleted.
Thus dynamically created data parallel tasks can only exploit subsets of the processors
statically included in the MPI virtual machine. We are portingCOLTHPF to exploit PVM,
which, due to its powerful dynamic features, will permit us to implement much more
dynamic behaviors.

Another notable example of a language attempting to integrate task and data parallelism
is Fortran M, a message-passing language, which has been proposed as a co-ordination
language for Fortran and HPF tasks[22]. Such an integration of Fortran M with HPF is
still only a proposal. The authors noted that a ‘clean’ integration poses several difficulties.
For example, the necessity of extending HPF with SEND and RECEIVE operations over
Fortran M channels, though they propose an alternative approach based on the use of
a message-passing library, i.e. the use of HPFextrinsic proceduresinvoking Fortran M
mechanisms. Note that the last approach departs from the original proposal of having a
language where the structures and the mechanisms for supporting message-passing are all
defined within the language, thus making accurate compile-time analysis possible.

In our opinion, the adoption of a message-passing paradigm to express HPF task
parallelism is too ‘low-level’. It requires large and error-prone code restructuring when a
program has to be tuned to better harness a given target architecture. Consider, for example,
the code re-writing needed to introduce a processor farm structure within a pipeline, where
the code to implement dynamic scheduling of incoming jobs is in charge of programmers.
On the other hand, although our proposal employs a message-passing layer such as
COLTHPF, it requires very little programming to structure parallel applications whose
structure matches the parallel forms provided by the high-level co-ordination language. All
the communication and scheduling code needed to implement task co-operation is in fact
automatically generated by the compiler on the basis of the corresponding implementation
templates.

Fosteret al.[15] proposed another message-passing approach to exploit task parallelism
within HPF. Differently from the Fortran M approach, this proposal regards the binding of
a standard message-passing librarywith HPF. More precisely, they propose a framework
in which concurrent HPF tasks communicate by means of a restricted subset of MPI
communication primitives. Below we will discuss this approach in some depth, above all
to point out usage complexities and semantics flaws of the proposed HPF-MPI binding.

The proposed implementation, like theCOLTHPF library, uses theEXTRINSIC
subroutine mechanism and aims to be portable between different HPF compilers. To this
end, their HPF-MPI does not access the HPF system’s internal data structures, but, like
COLTHPF, uses standard functionalities, available in any HPF-compliant implementation,
to find out array data distribution and to start SPMD computations within data-parallel HPF
tasks. However, their primitives are coded in C and they use thepghpf compiler, which
adopts a non-contiguous internal representation for the local portion of distributed arrays.
This causes a loss in performance, since arrays must be copied into contiguous temporary
C-style arrays before entering the extrinsic subroutine, and copied back upon return. In
our case there is no such cost becauseCOLTHPF primitives areEXTRINSIC HPF LOCAL
subroutines which exploit for the data the same internal representation used by the Adaptor
run-time.
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All the steps illustrated in Section2.2 to set up communication channels are
accomplished by their implementation as well, which, likeCOLTHPF, uses Ramaswamy
and Banerjee’s algorithm[12] to build theCommunication Schedule. However, they state
that these steps should be repeated for all calls of their HPF-MPI communication
primitives. Of course, when an array has to be repeatedly exchanged between two tasks,
and its distribution does not change from one communication to another, it would be better
to reuse the sameCommunication Scheduleto carry out several communications. For this
reason Fosteret al. also propose an HPF binding for persistent MPI communications.
They propose the use ofMPI Send init andMPI Recv init to set up the channel
and build theCommunication Schedule, and then ofMPI Start to actually perform the
communication.

Consider first the case of standard MPI communications which require information
on array distribution to be exchanged at each communication. This implies that the
implementation ofMPI Send also receives the mapping information from the destination
task. In other words, if the matchingMPI Recv is not executed by the partner task, the
sender task will block itself on theMPI Send. In practice, this HPF binding ofMPI Send
has a synchronous semantic, although most MPI implementations provide buffered and
asynchronous communication primitives because asynchronous communications make it
easier to write efficient and deadlock-free programs.

As regards persistent communications, we have noted a semantics flaw with respect
to the MPI standard, according to which a persistent request (i.e.MPI Send init or
MPI Recv init ) can be thought of as a communication port or a ‘half-channel’[23].
In fact, it does not provide the full functionalities of a conventional channel, since
there is no binding of the send port to the receive port. For example, the sender
may invokeMPI Send init and MPI Start , while the receiver continues to use
MPI Recv to read the messages. Conversely, Fosteret al.propose to use these persistent
subroutines to prepare the complete channel, and thus for eachMPI Send init there
must be a matchingMPI Recv init . Moreover, the primitives used to create persistent
communication requests have a synchronous semantics, so that they must be invoked in a
given order to avoid deadlocks, thus making it difficult for programmers to use them.

6. CONCLUSIONS

In this paper we have discussedCOLTHPF, a run-time support to co-ordinate HPF tasks,
and its implementation on top of a public domain HPF compiler, Adaptor. Since standard
HPF mechanisms to query data distribution and to start SPMD computations have been
used, we claim thatCOLTHPF can be easily ported in order to exploit other HPF compilers.

More importantly, we have shown howCOLTHPF can be exploited to design
implementation templates for common forms of parallelism, and how these templates can
be used by a compiler of a structured, high-level, template-based, co-ordination language.
We have discussed the benefits for programmers in using such a co-ordination language
to organize the co-operation among HPF tasks according to pipeline and processor farms
structures, which are recurrent forms of parallelism in many application fields. Knowledge
of the specific forms of parallelism employed to structure a given application, where
the forms of parallelism allowed belong to a restricted set, can also be exploited by the
compiler to statically optimize resource allocation on the basis of suitable performance
models and application costs.
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Finally, we have presented some encouraging performance studies, conducted on an
SGI/Cray T3E. For some experiments we used synthetic benchmarks in order to show
the communication performance ofCOLTHPF, as well as the effectiveness of the various
scheduling policies that were adopted to implement processor farms. For other experiments
we used real sample applications. We structured these applications in order to exploit a
mixture of task and data parallelism, and we compared these implementations with pure
data parallel ones. We have presented a classical 2-D fast Fourier transform, which was
structured as a two-stage pipeline, and a complete computer vision application where a
combination of pipeline and processor farm structures was adopted. We observed that
the mixed task/data-parallel versions of such applications always achieved performance
improvements over the pure data parallel counterparts. These improvements ranged from
a few per cent up to 160%.

In the experiments in which we varied data set sizes (e.g. 2-D fast Fourier transform),
we noted that the largest improvements were obtained when many processors were used
to execute experiments on small/medium sized problems. This behavior is particularly
interesting because for many interesting applications, e.g. in image and signal processing
applications, the size of the data sets is limited by physical constraints which cannot be
easily overcome[3].

Moreover, when the application is not CPU-bound but performs many I/O operations
(e.g. our computer vision application), the best organization was to run the I/O-bound parts
of the application on a few processors, and to reserve most processors for computation-
intensive parts which normally scale better with the number of processors.

Future work regards the implementation of the compiler for the proposed high-level
co-ordination language. This work will not begin from scratch. An optimizing compiler
for SKIE (SKeleton Integrated Environment), aP3L-like co-ordination language[6], has
already been implemented within the PQE2000 national project[24]. We only have to
extend the compiler to support HPF tasks and provide suitable performance models which
will allow the compiler to perform HPF program transformations and optimizations. As
a result of this integration, programmers will be able to easily structure their parallel
applications by hierarchically composing simpler tasks, where each atomic task can be
a sequential process (specified in C, C++, Fortran or Java), as well as a data-parallel HPF
task. A graphic tool aimed to help programmers in structuring theirCOLTHPF applications
by hierarchically composing the provided primitive forms of parallelism is also under
development. The tool can be easily extended to also support unstructured forms of task
interactions, in a similar way as the AVS[25] visual programming environment does. The
AVS system, however, does not support HPF modules and related optimized inter-module
communications, and does not allow modules to be structured according to high level forms
of task parallelism as pipelines and processor farms.
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